On changing cofinality of partially ordered sets
نویسنده
چکیده
It is shown that under GCH every poset preserves its cofinality in any cofinality preserving extension. On the other hand, starting with ω measurable cardinals, a model with a partial ordered set which can change its cofinality in a cofinality preserving extension is constructed.
منابع مشابه
Tripled partially ordered sets
In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.
متن کاملOn the Cofinality of Infinite Partially Ordered Sets: Factoring a Poset into Lean Essential Subsets
We study which infinite posets have simple cofinal subsets such as chains, or decompose canonically into such subsets. The posets of countable cofinality admitting such a decomposition are characterized by a forbidden substructure; the corresponding problem for uncountable cofinality remains open.
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملFixed point theorems for $alpha$-$psi$-contractive mappings in partially ordered sets and application to ordinary differential equations
In this paper, we introduce $alpha$-$psi$-contractive mapping in partially ordered sets and construct fixed point theorems to solve a first-order ordinary differential equation by existence of its lower solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 75 شماره
صفحات -
تاریخ انتشار 2010